123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122 |
- # -*- coding: utf-8 -*-
- """
- Created on Tue Jul 9 16:28:48 2024
- @author: Administrator
- """
- from os import *
- import chardet
- import pandas as pd
- pd.options.mode.copy_on_write = True
- # 获取文件编码
- def detect_file_encoding(filename):
- # 读取文件的前1000个字节(足够用于大多数编码检测)
- with open(filename, 'rb') as f:
- rawdata = f.read(1000)
- result = chardet.detect(rawdata)
- encoding = result['encoding']
- if encoding is None:
- encoding = 'gb18030'
- if encoding and encoding.lower() == 'gb2312' or encoding.lower().startswith("windows"):
- encoding = 'gb18030'
- return encoding
- # 读取数据到df
- def read_file_to_df(file_path, read_cols=list(), header=0):
- df = pd.DataFrame()
- if str(file_path).lower().endswith("csv") or str(file_path).lower().endswith("gz"):
- encoding = detect_file_encoding(file_path)
- end_with_gz = str(file_path).lower().endswith("gz")
- if read_cols:
- if end_with_gz:
- df = pd.read_csv(file_path, encoding=encoding, usecols=read_cols, compression='gzip', header=header)
- else:
- df = pd.read_csv(file_path, encoding=encoding, usecols=read_cols, header=header, on_bad_lines='warn')
- else:
- if end_with_gz:
- df = pd.read_csv(file_path, encoding=encoding, compression='gzip', header=header)
- else:
- df = pd.read_csv(file_path, encoding=encoding, header=header, on_bad_lines='warn')
- else:
- xls = pd.ExcelFile(file_path)
- # 获取所有的sheet名称
- sheet_names = xls.sheet_names
- for sheet in sheet_names:
- if read_cols:
- df = pd.concat([df, pd.read_excel(xls, sheet_name=sheet, header=header, usecols=read_cols)])
- else:
- df = pd.concat([df, pd.read_excel(xls, sheet_name=sheet, header=header)])
- return df
- def __build_directory_dict(directory_dict, path, filter_types=None):
- # 遍历目录下的所有项
- for item in listdir(path):
- item_path = path.join(path, item)
- if path.isdir(item_path):
- __build_directory_dict(directory_dict, item_path, filter_types=filter_types)
- elif path.isfile(item_path):
- if path not in directory_dict:
- directory_dict[path] = []
- if filter_types is None or len(filter_types) == 0:
- directory_dict[path].append(item_path)
- elif str(item_path).split(".")[-1] in filter_types:
- if str(item_path).count("~$") == 0:
- directory_dict[path].append(item_path)
- # 读取所有文件
- # 读取路径下所有的excel文件
- def read_excel_files(read_path):
- directory_dict = {}
- __build_directory_dict(directory_dict, read_path, filter_types=['xls', 'xlsx', 'csv', 'gz'])
- return [path for paths in directory_dict.values() for path in paths if path]
- # 创建路径
- def create_file_path(path, is_file_path=False):
- if is_file_path:
- path = path.dirname(path)
- if not path.exists(path):
- makedirs(path, exist_ok=True)
- if __name__ == '__main__':
- # path = r'/data/download/大唐玉湖性能分析离线分析/05整理数据/气象站数据'
- # save_path = r'/data/download/大唐玉湖性能分析离线分析/06整理数据/气象站数据'
- path = r'Z:\大唐玉湖性能分析离线分析\05整理数据\气象站数据'
- save_path = r'Z:\大唐玉湖性能分析离线分析\06整理数据\气象站数据'
- fengsu_df = read_file_to_df(path.join(path, '风速.csv'), read_cols=['当前时间', '实际风速'])
- fengxiang_df = read_file_to_df(path.join(path, '风向.csv'), read_cols=['当前时间', '实际风向'])
- fuzhaodu_df = read_file_to_df(path.join(path, '辐照度.csv'), read_cols=['时间', '水平总辐照度', '倾斜总辐照度', '散射辐照度'])
- shidu_df = read_file_to_df(path.join(path, '湿度.csv'), read_cols=['时间', '实际湿度'])
- wendu_df = read_file_to_df(path.join(path, '温度.csv'), read_cols=['时间', '实际温度'])
- yali_df = read_file_to_df(path.join(path, '压力.csv'), read_cols=['时间', '实际气压'])
- fengsu_df.rename(columns={'当前时间': '时间'}, inplace=True)
- fengxiang_df.rename(columns={'当前时间': '时间'}, inplace=True)
- dfs = [fengxiang_df, fengsu_df, fuzhaodu_df, shidu_df, wendu_df, yali_df]
- for df in dfs:
- df['时间'] = pd.to_datetime(df['时间'])
- df.set_index(keys='时间', inplace=True)
- df = pd.concat(dfs, axis=1)
- create_file_path(save_path, is_file_path=False)
- df.to_csv(path.join(save_path, '气象合并.csv'), encoding='utf-8')
|