12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667 |
- import multiprocessing
- import os
- import sys
- sys.path.insert(0, os.path.abspath(__file__).split("tmp_file")[0])
- import pandas as pd
- from utils.file.trans_methods import read_file_to_df
- def save_percent(value, save_decimal=7):
- return round(value, save_decimal) * 100
- def read_and_select(file_path, read_cols):
- result_df = pd.DataFrame()
- df = read_file_to_df(file_path, read_cols=read_cols)
- wind_name = os.path.basename(file_path).split('.')[0]
- df['风机号'] = wind_name
- df = df.query("(startTime>='2023-10-01 00:00:00') & (startTime<'2024-10-01 00:00:00')")
- count = 366 * 24 * 6 # 十分钟数据 2024年366天
- repeat_time_count = df.shape[0] - len(df['startTime'].unique())
- print(wind_name, count, repeat_time_count)
- result_df['风机号'] = [wind_name]
- result_df['重复率'] = [save_percent(repeat_time_count / count)]
- result_df['重复次数'] = [repeat_time_count]
- result_df['总记录数'] = [count]
- for read_col in read_cols:
- if read_col != 'startTime':
- df[read_col] = pd.to_numeric(df[read_col], errors='coerce')
- else:
- df[read_col] = pd.to_datetime(df[read_col], errors='coerce')
- group_df = df.groupby(by=['风机号']).count()
- group_df.reset_index(inplace=True)
- count_df = pd.DataFrame(group_df)
- total_count = count_df[read_cols].values[0].sum()
- print(wind_name, total_count, count * len(read_cols))
- result_df['平均缺失率,单位%'] = [save_percent(1 - total_count / (count * len(read_cols)))]
- result_df['缺失数值'] = ['-'.join([str(count - i) for i in count_df[read_cols].values[0]])]
- del group_df
- error_fengsu_count = df.query("(风速10min < 0) | (风速10min > 80)").shape[0]
- error_yougong_gonglv = df.query("(有功功率 < -200) | (有功功率 > 4800)").shape[0]
- result_df['平均异常率'] = [save_percent((error_fengsu_count + error_yougong_gonglv) / (2 * count))]
- return result_df
- if __name__ == '__main__':
- read_cols_str = 'startTime,有功功率,叶轮转速,发电机转速,风速10min,桨叶1角度,桨叶2角度,桨叶3角度,机舱位置,偏航误差,发电机轴承温度,机舱内温度,环境温度,发电机U相温度,发电机V相温度,发电机W相温度'
- read_cols = [i for i in read_cols_str.split(",") if i]
- read_dir = r'/data/download/collection_data/1进行中/张崾先风电场-陕西-华电/收资数据/导出数据2'
- files = os.listdir(read_dir)
- with multiprocessing.Pool(16) as pool:
- dfs = pool.starmap(read_and_select, [(os.path.join(read_dir, i), read_cols) for i in files])
- df = pd.concat(dfs, ignore_index=True)
- df.sort_values(by=['风机号'], inplace=True)
- df.to_csv("张崾先统计-分钟.csv", encoding='utf8', index=False)
|