power_derating_biaozhun.py 3.3 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990
  1. from os import *
  2. import matplotlib
  3. import numpy as np
  4. from utils.draw.draw_file import scatter
  5. matplotlib.use('Agg')
  6. matplotlib.rcParams['font.family'] = 'SimHei' # 或者 'Microsoft YaHei'
  7. matplotlib.rcParams['font.sans-serif'] = ['SimHei'] # 或者 ['Microsoft YaHei']
  8. from utils.file.trans_methods import read_file_to_df
  9. from utils.file.trans_methods import read_excel_files
  10. import pandas as pd
  11. class ContractPowerCurve(object):
  12. def __init__(self, df: pd.DataFrame, wind_velocity='风速', active_power='功率'):
  13. self.df = df
  14. self.wind_velocity = wind_velocity
  15. self.active_power = active_power
  16. def marker_active_power(contract_power_curve_class: ContractPowerCurve, df: pd.DataFrame, active_power='有功功率 kW均值',
  17. wind_velocity='风速 m/s均值'):
  18. """
  19. 标记有功功率为正的记录
  20. :param contract_power_curve_class: 合同功率曲线
  21. :param df: 原始数据
  22. :return: 标记有功功率为正的原始数据
  23. """
  24. contract_power_curve_df = contract_power_curve_class.df
  25. curve_wv = contract_power_curve_df[contract_power_curve_class.wind_velocity].values
  26. curve_ap = contract_power_curve_df[contract_power_curve_class.active_power].values
  27. df.dropna(subset=[active_power, wind_velocity], inplace=True)
  28. ap_gt_0_df = df[df[active_power] > 0]
  29. ap_le_0_df = df[df[active_power] <= 0]
  30. ap_le_0_df["marker"] = -1
  31. active_power_values = ap_gt_0_df[active_power].values
  32. wind_speed_values = ap_gt_0_df[wind_velocity].values
  33. ap_gt_0_in = [0] * ap_gt_0_df.shape[0]
  34. for i in range(len(ap_gt_0_in)):
  35. wind_speed = wind_speed_values[i]
  36. active_power = active_power_values[i]
  37. # if active_power >= 2200 - 200:
  38. # ap_gt_0_in[i] = 1
  39. # else:
  40. diffs = np.abs(curve_wv - wind_speed)
  41. # 找到差值最小的索引和对应的差值
  42. minDiff, idx = np.min(diffs), np.argmin(diffs)
  43. # 使用找到的索引获取对应的值
  44. closestValue = curve_ap[idx]
  45. if active_power - closestValue >= -100:
  46. ap_gt_0_in[i] = 1
  47. ap_gt_0_df['marker'] = ap_gt_0_in
  48. return pd.concat([ap_gt_0_df, ap_le_0_df])
  49. if __name__ == '__main__':
  50. wind_power_df = read_file_to_df(r"D:\中能智能\matlib计算相关\标记derating\PV_Curve.csv")
  51. all_files = read_excel_files(r"Z:\collection_data\1进行中\诺木洪风电场-甘肃-华电\清理数据\min-666")
  52. save_path = r"D:\trans_data\诺木洪\清理数据\min-666-derating"
  53. wind_power_df_class = ContractPowerCurve(wind_power_df)
  54. for file in all_files:
  55. name = path.basename(file).split("@")[0]
  56. try:
  57. df = read_file_to_df(file)
  58. df = marker_active_power(wind_power_df_class, df)
  59. df = df[df['marker'] == 1]
  60. df.to_csv(path.join(save_path, name + '.csv'), index=False, encoding='utf-8')
  61. # 使用scatter函数绘制散点图
  62. if not df.empty:
  63. scatter(name, x_label='风速均值', y_label='有功功率均值', x_values=df['风速 m/s均值'].values,
  64. y_values=df['有功功率 kW均值'].values, color='green',
  65. save_file_path=path.join(save_path, name + '均值.png'))
  66. except Exception as e:
  67. print(path.basename(file), "出错", str(e))
  68. raise e