123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990 |
- from os import *
- import matplotlib
- import numpy as np
- from utils.draw.draw_file import scatter
- matplotlib.use('Agg')
- matplotlib.rcParams['font.family'] = 'SimHei' # 或者 'Microsoft YaHei'
- matplotlib.rcParams['font.sans-serif'] = ['SimHei'] # 或者 ['Microsoft YaHei']
- from utils.file.trans_methods import read_file_to_df
- from utils.file.trans_methods import read_excel_files
- import pandas as pd
- class ContractPowerCurve(object):
- def __init__(self, df: pd.DataFrame, wind_velocity='风速', active_power='功率'):
- self.df = df
- self.wind_velocity = wind_velocity
- self.active_power = active_power
- def marker_active_power(contract_power_curve_class: ContractPowerCurve, df: pd.DataFrame, active_power='有功功率 kW均值',
- wind_velocity='风速 m/s均值'):
- """
- 标记有功功率为正的记录
- :param contract_power_curve_class: 合同功率曲线
- :param df: 原始数据
- :return: 标记有功功率为正的原始数据
- """
- contract_power_curve_df = contract_power_curve_class.df
- curve_wv = contract_power_curve_df[contract_power_curve_class.wind_velocity].values
- curve_ap = contract_power_curve_df[contract_power_curve_class.active_power].values
- df.dropna(subset=[active_power, wind_velocity], inplace=True)
- ap_gt_0_df = df[df[active_power] > 0]
- ap_le_0_df = df[df[active_power] <= 0]
- ap_le_0_df["marker"] = -1
- active_power_values = ap_gt_0_df[active_power].values
- wind_speed_values = ap_gt_0_df[wind_velocity].values
- ap_gt_0_in = [0] * ap_gt_0_df.shape[0]
- for i in range(len(ap_gt_0_in)):
- wind_speed = wind_speed_values[i]
- active_power = active_power_values[i]
- # if active_power >= 2200 - 200:
- # ap_gt_0_in[i] = 1
- # else:
- diffs = np.abs(curve_wv - wind_speed)
- # 找到差值最小的索引和对应的差值
- minDiff, idx = np.min(diffs), np.argmin(diffs)
- # 使用找到的索引获取对应的值
- closestValue = curve_ap[idx]
- if active_power - closestValue >= -100:
- ap_gt_0_in[i] = 1
- ap_gt_0_df['marker'] = ap_gt_0_in
- return pd.concat([ap_gt_0_df, ap_le_0_df])
- if __name__ == '__main__':
- wind_power_df = read_file_to_df(r"D:\中能智能\matlib计算相关\标记derating\PV_Curve.csv")
- all_files = read_excel_files(r"Z:\collection_data\1进行中\诺木洪风电场-甘肃-华电\清理数据\min-666")
- save_path = r"D:\trans_data\诺木洪\清理数据\min-666-derating"
- wind_power_df_class = ContractPowerCurve(wind_power_df)
- for file in all_files:
- name = path.basename(file).split("@")[0]
- try:
- df = read_file_to_df(file)
- df = marker_active_power(wind_power_df_class, df)
- df = df[df['marker'] == 1]
- df.to_csv(path.join(save_path, name + '.csv'), index=False, encoding='utf-8')
- # 使用scatter函数绘制散点图
- if not df.empty:
- scatter(name, x_label='风速均值', y_label='有功功率均值', x_values=df['风速 m/s均值'].values,
- y_values=df['有功功率 kW均值'].values, color='green',
- save_file_path=path.join(save_path, name + '均值.png'))
- except Exception as e:
- print(path.basename(file), "出错", str(e))
- raise e
|