ReadAndSaveTmp.py 16 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351
  1. import datetime
  2. import multiprocessing
  3. import os
  4. import traceback
  5. import pandas as pd
  6. from etl.wind_power.min_sec import TransParam
  7. from etl.common.PathsAndTable import PathsAndTable
  8. from service.plt_service import update_trans_transfer_progress
  9. from utils.file.trans_methods import read_excel_files, split_array, del_blank, \
  10. create_file_path, read_file_to_df, valid_eval
  11. from utils.log.trans_log import trans_print
  12. from utils.systeminfo.sysinfo import use_files_get_max_cpu_count, get_dir_size, max_file_size_get_max_cpu_count
  13. class ReadAndSaveTmp(object):
  14. def __init__(self, pathsAndTable: PathsAndTable, trans_param: TransParam):
  15. self.pathsAndTable = pathsAndTable
  16. self.trans_param = trans_param
  17. self.exist_wind_names = multiprocessing.Manager().list()
  18. self.lock = multiprocessing.Manager().Lock()
  19. self.file_lock = multiprocessing.Manager().dict()
  20. def _save_to_tmp_csv_by_name(self, df, name):
  21. save_name = str(name) + '.csv'
  22. save_path = os.path.join(self.pathsAndTable.get_read_tmp_path(), save_name)
  23. create_file_path(save_path, is_file_path=True)
  24. with self.lock:
  25. if name in self.exist_wind_names:
  26. contains_name = True
  27. else:
  28. contains_name = False
  29. self.exist_wind_names.append(name)
  30. if contains_name:
  31. df.to_csv(save_path, index=False, encoding='utf8', mode='a',
  32. header=False)
  33. else:
  34. df.to_csv(save_path, index=False, encoding='utf8')
  35. def save_merge_data(self, file_path):
  36. df = self.read_excel_to_df(file_path)
  37. if self.trans_param.wind_name_exec:
  38. if valid_eval(self.trans_param.wind_name_exec):
  39. exec_str = f"df['wind_turbine_number'].apply(lambda wind_name: {self.trans_param.wind_name_exec} )"
  40. df['wind_turbine_number'] = eval(exec_str)
  41. names = set(df['wind_turbine_number'].values)
  42. cols = list(df.columns)
  43. cols.sort()
  44. csv_name = "-".join(cols) + ".csv"
  45. for name in names:
  46. exist_name = name + '-' + csv_name
  47. merge_path = self.pathsAndTable.get_merge_tmp_path(name)
  48. create_file_path(merge_path)
  49. with self.lock:
  50. if exist_name in self.exist_wind_names:
  51. contains_name = True
  52. else:
  53. contains_name = False
  54. self.exist_wind_names.append(exist_name)
  55. save_path = os.path.join(merge_path, csv_name)
  56. if contains_name:
  57. df.to_csv(save_path, index=False, encoding='utf-8', mode='a',
  58. header=False)
  59. else:
  60. df.to_csv(save_path, index=False, encoding='utf-8')
  61. def df_save_to_tmp_file(self, df=pd.DataFrame()):
  62. if self.trans_param.is_vertical_table:
  63. pass
  64. else:
  65. # 转换字段
  66. same_col = {}
  67. if self.trans_param.cols_tran:
  68. cols_tran = self.trans_param.cols_tran
  69. real_cols_trans = dict()
  70. for k, v in cols_tran.items():
  71. if v and not v.startswith("$"):
  72. if v not in real_cols_trans.keys():
  73. real_cols_trans[v] = k
  74. else:
  75. value = real_cols_trans[v]
  76. if value in same_col.keys():
  77. same_col[value].append(k)
  78. else:
  79. same_col[value] = [k]
  80. df.rename(columns=real_cols_trans, inplace=True)
  81. # 添加使用同一个excel字段的值
  82. for key in same_col.keys():
  83. for col in same_col[key]:
  84. df[col] = df[key]
  85. del_keys = set(df.columns) - set(cols_tran.keys())
  86. for key in del_keys:
  87. df.drop(key, axis=1, inplace=True)
  88. df = del_blank(df, ['wind_turbine_number'])
  89. df = df[df['time_stamp'].isna() == False]
  90. if self.trans_param.wind_name_exec and not self.trans_param.merge_columns:
  91. if valid_eval(self.trans_param.wind_name_exec):
  92. exec_str = f"df['wind_turbine_number'].apply(lambda wind_name: {self.trans_param.wind_name_exec} )"
  93. df['wind_turbine_number'] = eval(exec_str)
  94. self.save_to_tmp_csv(df)
  95. def save_to_tmp_csv(self, df):
  96. names = set(df['wind_turbine_number'].values)
  97. if names:
  98. trans_print("开始保存", str(names), "到临时文件")
  99. for name in names:
  100. self._save_to_tmp_csv_by_name(df[df['wind_turbine_number'] == name], name)
  101. del df
  102. trans_print("保存", str(names), "到临时文件成功, 风机数量", len(names))
  103. def merge_df(self, dir_path):
  104. all_files = read_excel_files(dir_path)
  105. df = pd.DataFrame()
  106. for file in all_files:
  107. now_df = read_file_to_df(file)
  108. now_df.dropna(subset=['time_stamp'], inplace=True)
  109. now_df.drop_duplicates(subset=['time_stamp'], inplace=True)
  110. now_df.set_index(keys=['time_stamp', 'wind_turbine_number'], inplace=True)
  111. df = pd.concat([df, now_df], axis=1)
  112. df.reset_index(inplace=True)
  113. self.df_save_to_tmp_file(df)
  114. return df
  115. def read_file_and_save_tmp(self):
  116. all_files = read_excel_files(self.pathsAndTable.get_excel_tmp_path())
  117. split_count = use_files_get_max_cpu_count(all_files)
  118. all_arrays = split_array(all_files, split_count)
  119. if self.trans_param.merge_columns:
  120. for index, arr in enumerate(all_arrays):
  121. try:
  122. with multiprocessing.Pool(split_count) as pool:
  123. pool.starmap(self.save_merge_data, [(ar,) for ar in arr])
  124. except Exception as e:
  125. trans_print(traceback.format_exc())
  126. message = "整理临时文件,系统返回错误:" + str(e)
  127. raise ValueError(message)
  128. update_trans_transfer_progress(self.pathsAndTable.batch_no, self.pathsAndTable.read_type,
  129. round(20 + 20 * (index + 1) / len(all_arrays), 2),
  130. self.pathsAndTable.save_db)
  131. dirs = [os.path.join(self.pathsAndTable.get_merge_tmp_path(), dir_name) for dir_name in
  132. os.listdir(self.pathsAndTable.get_merge_tmp_path())]
  133. dir_total_size = get_dir_size(dirs[0])
  134. split_count = max_file_size_get_max_cpu_count(dir_total_size)
  135. all_arrays = split_array(dirs, split_count)
  136. for index, arr in enumerate(all_arrays):
  137. try:
  138. with multiprocessing.Pool(split_count) as pool:
  139. pool.starmap(self.merge_df, [(ar,) for ar in arr])
  140. except Exception as e:
  141. trans_print(traceback.format_exc())
  142. message = "整理临时文件,系统返回错误:" + str(e)
  143. raise ValueError(message)
  144. update_trans_transfer_progress(self.pathsAndTable.batch_no, self.pathsAndTable.read_type,
  145. round(20 + 30 * (index + 1) / len(all_arrays), 2),
  146. self.pathsAndTable.save_db)
  147. else:
  148. for index, arr in enumerate(all_arrays):
  149. try:
  150. with multiprocessing.Pool(split_count) as pool:
  151. dfs = pool.starmap(self.read_excel_to_df, [(ar,) for ar in arr])
  152. for df in dfs:
  153. self.df_save_to_tmp_file(df)
  154. except Exception as e:
  155. trans_print(traceback.format_exc())
  156. message = "整理临时文件,系统返回错误:" + str(e)
  157. raise ValueError(message)
  158. update_trans_transfer_progress(self.pathsAndTable.batch_no, self.pathsAndTable.read_type,
  159. round(20 + 30 * (index + 1) / len(all_arrays), 2),
  160. self.pathsAndTable.save_db)
  161. def read_excel_to_df(self, file_path):
  162. read_cols = [v.split(",")[0] for k, v in self.trans_param.cols_tran.items() if v and not v.startswith("$")]
  163. trans_dict = {}
  164. for k, v in self.trans_param.cols_tran.items():
  165. if v and not str(v).startswith("$"):
  166. trans_dict[v] = k
  167. if self.trans_param.is_vertical_table:
  168. vertical_cols = self.trans_param.vertical_cols
  169. df = read_file_to_df(file_path, vertical_cols, trans_cols=self.trans_param.vertical_cols)
  170. df = df[df[self.trans_param.vertical_key].isin(read_cols)]
  171. df.rename(columns={self.trans_param.cols_tran['wind_turbine_number']: 'wind_turbine_number',
  172. self.trans_param.cols_tran['time_stamp']: 'time_stamp'}, inplace=True)
  173. df[self.trans_param.vertical_key] = df[self.trans_param.vertical_key].map(trans_dict).fillna(
  174. df[self.trans_param.vertical_key])
  175. return df
  176. else:
  177. trans_dict = dict()
  178. trans_cols = []
  179. for k, v in self.trans_param.cols_tran.items():
  180. if v and v.startswith("$") or v.find(",") > 0:
  181. trans_dict[v] = k
  182. if v.find("|") > -1:
  183. vs = v.split("|")
  184. trans_cols.extend(vs)
  185. else:
  186. trans_cols.append(v)
  187. trans_cols = list(set(trans_cols))
  188. if self.trans_param.merge_columns:
  189. df = read_file_to_df(file_path, trans_cols=trans_cols, not_find_header='ignore')
  190. else:
  191. if self.trans_param.need_valid_cols:
  192. df = read_file_to_df(file_path, read_cols, trans_cols=trans_cols)
  193. else:
  194. df = read_file_to_df(file_path, trans_cols=trans_cols)
  195. # 处理列名前缀问题
  196. if self.trans_param.resolve_col_prefix:
  197. columns_dict = dict()
  198. if valid_eval(self.trans_param.resolve_col_prefix):
  199. for column in df.columns:
  200. columns_dict[column] = eval(self.trans_param.resolve_col_prefix)
  201. df.rename(columns=columns_dict, inplace=True)
  202. if self.trans_param.merge_columns:
  203. select_cols = [self.trans_param.cols_tran['wind_turbine_number'],
  204. self.trans_param.cols_tran['time_stamp'],
  205. 'wind_turbine_number', 'time_stamp']
  206. select_cols.extend(trans_cols)
  207. rename_dict = dict()
  208. wind_turbine_number_col = self.trans_param.cols_tran['wind_turbine_number']
  209. if wind_turbine_number_col.find("|") > -1:
  210. cols = wind_turbine_number_col.split("|")
  211. for col in cols:
  212. rename_dict[col] = 'wind_turbine_number'
  213. time_stamp_col = self.trans_param.cols_tran['time_stamp']
  214. if time_stamp_col.find("|") > -1:
  215. cols = time_stamp_col.split("|")
  216. for col in cols:
  217. rename_dict[col] = 'time_stamp'
  218. df.rename(columns=rename_dict, inplace=True)
  219. for col in df.columns:
  220. if col not in select_cols:
  221. del df[col]
  222. for k, v in trans_dict.items():
  223. if k.startswith("$file"):
  224. file = ".".join(os.path.basename(file_path).split(".")[0:-1])
  225. if k == "$file":
  226. ks = k.split("|")
  227. bool_contains = False
  228. for k_data in ks:
  229. if k_data in df.columns or v in df.columns:
  230. bool_contains = True
  231. if not bool_contains:
  232. df[v] = str(file)
  233. elif k.startswith("$file["):
  234. ks = k.split("|")
  235. bool_contains = False
  236. for k_data in ks:
  237. if k_data in df.columns or v in df.columns:
  238. bool_contains = True
  239. if not bool_contains:
  240. datas = str(ks[0].replace("$file", "").replace("[", "").replace("]", "")).split(":")
  241. if len(datas) != 2:
  242. raise Exception("字段映射出现错误 :" + str(trans_dict))
  243. df[v] = str(file[int(datas[0]):int(datas[1])]).strip()
  244. elif k.startswith("$file.split"):
  245. ks = k.split("|")
  246. bool_contains = False
  247. for k_data in ks:
  248. if k_data in df.columns or v in df.columns:
  249. bool_contains = True
  250. if not bool_contains:
  251. datas = str(ks[0]).replace("$file.split(", "").replace(")", "").split(",")
  252. split_str = str(datas[0])
  253. split_index = int(datas[1])
  254. df[v] = str(file.split(split_str)[split_index])
  255. elif k.find("$file_date") > 0:
  256. datas = str(k.split(",")[1].replace("$file_date", "").replace("[", "").replace("]", "")).split(":")
  257. if len(datas) != 2:
  258. raise Exception("字段映射出现错误 :" + str(trans_dict))
  259. file = ".".join(os.path.basename(file_path).split(".")[0:-1])
  260. date_str = str(file[int(datas[0]):int(datas[1])]).strip()
  261. df[v] = df[k.split(",")[0]].apply(lambda x: date_str + " " + str(x))
  262. elif k.startswith("$folder"):
  263. folder = file_path
  264. ks = k.split("|")
  265. bool_contains = False
  266. for k_data in ks:
  267. if k_data in df.columns or v in df.columns:
  268. bool_contains = True
  269. if not bool_contains:
  270. cengshu = int(str(ks[0].replace("$folder", "").replace("[", "").replace("]", "")))
  271. for i in range(cengshu):
  272. folder = os.path.dirname(folder)
  273. df[v] = str(str(folder).split(os.sep)[-1]).strip()
  274. elif k.startswith("$sheet_name"):
  275. df[v] = df['sheet_name']
  276. if 'time_stamp' not in df.columns:
  277. cols_trans = [i for i in self.trans_param.cols_tran['time_stamp'].split('|')]
  278. cols_dict = dict()
  279. for col in cols_trans:
  280. cols_dict[col] = 'time_stamp'
  281. df.rename(columns=cols_dict, inplace=True)
  282. if 'wind_turbine_number' not in df.columns:
  283. cols_trans = [i for i in self.trans_param.cols_tran['wind_turbine_number'].split('|')]
  284. cols_dict = dict()
  285. for col in cols_trans:
  286. cols_dict[col] = 'wind_turbine_number'
  287. df.rename(columns=cols_dict, inplace=True)
  288. return df
  289. def run(self):
  290. trans_print("开始保存数据到临时文件")
  291. begin = datetime.datetime.now()
  292. self.read_file_and_save_tmp()
  293. update_trans_transfer_progress(self.pathsAndTable.batch_no, self.pathsAndTable.read_type, 50,
  294. self.pathsAndTable.save_db)
  295. trans_print("保存数据到临时文件结束,耗时:", datetime.datetime.now() - begin)