123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355 |
- import datetime
- import numpy as np
- from pandas import DataFrame
- from utils.file.trans_methods import read_file_to_df
- from utils.log.trans_log import trans_print
- from utils.systeminfo.sysinfo import print_memory_usage
- class ClassIdentifier(object):
- """
- 分类标识 -1:停机 0:好点 1:欠发功率点;2:超发功率点;3:额定风速以上的超发功率点 4: 限电
- """
- def __init__(self, wind_turbine_number="", origin_df: DataFrame = None,
- wind_velocity='wind_velocity',
- active_power='active_power',
- pitch_angle_blade='pitch_angle_blade_1',
- rated_power=1500, cut_out_speed=20, file_path: str = None):
- """
- :param file_path: The file path of the input data.
- :param origin_df: The pandas DataFrame containing the input data.
- :param wind_velocity: 风速字段
- :param active_power: 有功功率字段
- :param pitch_angle_blade: 桨距角
- :param rated_power: 额定功率
- :param cut_out_speed: 切出风速
- """
- self.wind_turbine_number = wind_turbine_number
- self.wind_velocity = wind_velocity
- self.active_power = active_power
- self.pitch_angle_blade = pitch_angle_blade
- self.rated_power = rated_power # 额定功率1500kw,可改为2000kw
- self.cut_out_speed = cut_out_speed
- if self.rated_power is None:
- trans_print(wind_turbine_number, "WARNING:rated_power配置为空的")
- self.rated_power = 1500
- if self.cut_out_speed is None:
- trans_print(cut_out_speed, "WARNING:cut_out_speed配置为空的")
- self.cut_out_speed = 20
- if file_path is None and origin_df is None:
- raise ValueError("Either file_path or origin_df should be provided.")
- if file_path:
- self.df = read_file_to_df(file_path)
- else:
- self.df = origin_df
- def identifier(self):
- # 风速 和 有功功率 df
- # self.df = self.df[[self.wind_velocity, self.active_power, "pitch_angle_blade_1"]]
- self.df.reset_index(inplace=True)
- wind_and_power_df_count = self.df.shape[0]
- power_max = self.df[self.active_power].max()
- power_rated = np.ceil(power_max / 100) * 100
- v_cut_out = self.cut_out_speed
- # 网格法确定风速风向分区数量,功率方向分区数量,
- power_bin_count = int(np.ceil(power_rated / 25)) # 功率分区间隔25kW
- velocity_bin_count = int(np.ceil(v_cut_out / 0.25)) # 风速分区间隔0.25m/s
- # 存储功率大于零的运行数据
- power_gt_zero_array = np.zeros([wind_and_power_df_count, 2], dtype=float)
- power_gt_zero_array_count = 0
- for i in range(wind_and_power_df_count):
- if self.df.loc[i, self.active_power] > 0:
- power_gt_zero_array[power_gt_zero_array_count, 0] = self.df.loc[i, self.wind_velocity]
- power_gt_zero_array[power_gt_zero_array_count, 1] = self.df.loc[i, self.active_power]
- power_gt_zero_array_count = power_gt_zero_array_count + 1
- # 统计各网格落入的散点个数
- x_box_number = np.zeros([power_bin_count, velocity_bin_count], dtype=int)
- n_which_p = -1
- n_which_v = -1
- for i in range(power_gt_zero_array_count):
- for m in range(power_bin_count):
- if m * 25 < power_gt_zero_array[i, 1] <= (m + 1) * 25:
- n_which_p = m
- break
- # todo 风速不太懂为什么区间用 0.125 - 0.375 而不是 0 - 0.25 区间
- for n in range(velocity_bin_count):
- if (n * 0.25 + 0.125) < power_gt_zero_array[i, 0] <= ((n + 1) * 0.25 + 0.125):
- n_which_v = n
- break
- if n_which_p > -1 and n_which_v > -1:
- x_box_number[n_which_p, n_which_v] = x_box_number[n_which_p, n_which_v] + 1
- # 在功率方向将网格内散点绝对个数转换为相对百分比,备用
- power_box_percent = np.zeros([power_bin_count, velocity_bin_count], dtype=float)
- # 功率方向统计
- power_bin_sum = np.zeros(power_bin_count, dtype=int)
- for i in range(power_bin_count):
- power_bin_sum[i] = sum(x_box_number[i, :])
- # for m in range(velocity_bin_count):
- # power_bin_sum[i] = power_bin_sum[i] + x_box_number[i, m]
- for m in range(velocity_bin_count):
- if power_bin_sum[i] > 0:
- power_box_percent[i, m] = x_box_number[i, m] / power_bin_sum[i] * 100
- # 在风速方向将网格内散点绝对个数转换为相对百分比,备用
- v_box_percent = np.zeros([power_bin_count, velocity_bin_count], dtype=float)
- v_bin_sum = np.zeros(velocity_bin_count, dtype=int)
- for i in range(velocity_bin_count):
- v_bin_sum[i] = sum(x_box_number[:, i])
- # for m in range(power_bin_count):
- # v_bin_sum[i] = v_bin_sum[i] + x_box_number[m, i]
- for m in range(power_bin_count):
- if v_bin_sum[i] > 0:
- v_box_percent[m, i] = x_box_number[m, i] / v_bin_sum[i] * 100
- # 以水平功率带方向为准,分析每个水平功率带中,功率主带中心,即找百分比最大的网格位置。
- p_box_max_index = np.zeros(power_bin_count, dtype=int) # 水平功率带最大网格位置索引
- p_box_max_p = np.zeros(power_bin_count, dtype=int) # 水平功率带最大网格百分比
- for m in range(power_bin_count):
- # 确定每一水平功率带的最大网格位置索引即百分比值
- p_box_max_p[m], p_box_max_index[m] = power_box_percent[m, :].max(), power_box_percent[m, :].argmax()
- # 切入风速特殊处理,如果切入风速过于偏右,向左拉回
- # todo 为什么第一行数据的索引值 > 14个就要往左拉回,还有是不是不叫切入风速,这个是 落入这个区间功率最多的个数的索引值
- if p_box_max_index[0] > 14:
- p_box_max_index[0] = 9
- # 以水平功率带方向为基准,进行分析
- dot_dense_left_right = np.zeros([power_bin_count, 2], dtype=int) # 存储每一水平功率带的功率主带以最大网格为中心,向向左,向右扩展的网格数
- dot_valve = 90 # 从中心向左右对称扩展网格的散点百分比和的阈值。
- for i in range(power_bin_count - 6): # 从最下层水平功率带1开始,向上到第PNum-6个水平功率带(额定功率一下水平功率带),逐一分析
- p_dot_dense_sum = p_box_max_p[i] # 以中心最大水平功率带为基准,向左向右对称扩展网格,累加各网格散点百分比
- i_spread_right = 1
- i_spread_left = 1
- while p_dot_dense_sum < dot_valve:
- if (p_box_max_index[i] + i_spread_right) < velocity_bin_count - 1:
- # 向右侧扩展
- p_dot_dense_sum = p_dot_dense_sum + power_box_percent[i, p_box_max_index[i] + i_spread_right]
- i_spread_right = i_spread_right + 1
- if (p_box_max_index[i] + i_spread_right) > velocity_bin_count - 1:
- break
- if (p_box_max_index[i] - i_spread_left) > 0:
- # 向左侧扩展
- p_dot_dense_sum = p_dot_dense_sum + power_box_percent[i, p_box_max_index[i] - i_spread_left]
- i_spread_left = i_spread_left + 1
- if (p_box_max_index[i] - i_spread_left) <= 0:
- break
- i_spread_right = i_spread_right - 1
- i_spread_left = i_spread_left - 1
- # 向左右对称扩展完毕
- dot_dense_left_right[i, 0] = i_spread_left
- dot_dense_left_right[i, 1] = i_spread_right
- main_band_right = np.median(dot_dense_left_right[:, 1])
- # 散点向右显著延展分布的水平功率带为限功率水平带
- # 各水平功率带是否为限功率标识,==1:是;==0:不是
- power_limit = np.zeros([power_bin_count, 1], dtype=int)
- width_average = 0 # 功率主带平均宽度
- # todo 限功率主带判别阈值为什么要加3
- power_limit_valve = np.ceil(main_band_right) + 3 # 限功率主带判别阈值
- n_counter = 0
- for i in range(power_bin_count - 6):
- # 如果向右扩展网格数大于阈值,且该水平功率带点总数>20,是限功率
- if dot_dense_left_right[i, 1] > power_limit_valve and power_bin_sum[i] > 20:
- power_limit[i] = 1
- if dot_dense_left_right[i, 1] <= power_limit_valve:
- # 统计正常水平功率带右侧宽度
- width_average = width_average + dot_dense_left_right[i, 1]
- n_counter = n_counter + 1
- width_average = width_average / n_counter # 功率主带平均宽度
- # 对限负荷水平功率带的最大网格较下面相邻层显著偏右,拉回
- for i in range(1, power_bin_count - 6):
- if power_limit[i] == 1 and abs(p_box_max_index[i] - p_box_max_index[i - 1]) > 5:
- p_box_max_index[i] = p_box_max_index[i - 1] + 1
- # 功率主带的右边界
- curve_width = int(np.ceil(width_average) + 2)
- # 数据异常需要剔除的网格标识,标识1:功率主带右侧的欠发网格;2:功率主带左侧的超发网格 3:额定功率以上的超发点
- b_box_remove = np.zeros([power_bin_count, velocity_bin_count], dtype=int)
- for m in range(power_bin_count - 6):
- for n in range(p_box_max_index[m] + curve_width, velocity_bin_count):
- b_box_remove[m, n] = 1
- for n in range(p_box_max_index[m] - curve_width, -1, -1):
- b_box_remove[m, n] = 2
- # 确定功率主带的左上拐点,即额定风速位置的网格索引
- curve_top = np.zeros(2, dtype=int)
- curve_top_valve = 3 # 网格的百分比阈值
- b_top_find = False
- for m in range(power_bin_count - 5, -1, -1):
- for n in range(velocity_bin_count):
- # 如左上角网格的百分比和散点个数大于阈值。
- if v_box_percent[m, n] > curve_top_valve and x_box_number[m, n] >= 10:
- curve_top[0] = m
- curve_top[1] = n
- b_top_find = True
- break
- if b_top_find:
- break
- isolate_valve = 3
- for m in range(power_bin_count - 6):
- for n in range(p_box_max_index[m] + curve_width, velocity_bin_count):
- if power_box_percent[m, n] < isolate_valve:
- b_box_remove[m, n] = 1
- # 功率主带顶部宽度
- curve_width_t = 2
- for m in range(power_bin_count - curve_width_t - 1, power_bin_count):
- for n in range(velocity_bin_count):
- b_box_remove[m, n] = 3 # 网格为额定功率以上的超发点
- # 功率主带拐点左侧的欠发网格标识
- for m in range(power_bin_count - 5 - 1, power_bin_count):
- for n in range(curve_top[1] - 1):
- b_box_remove[m, n] = 2
- # 以网格的标识,决定该网格内数据的标识。dzwind_and_power_sel。散点在哪个网格,此网格的标识即为该点的标识
- # -1:停机 0:好点 1:欠发功率点;2:超发功率点;3:额定风速以上的超发功率点 4: 限电
- dzwind_and_power_sel = np.zeros(power_gt_zero_array_count, dtype=int)
- n_which_p = -1
- n_which_v = -1
- for i in range(power_gt_zero_array_count):
- for m in range(power_bin_count):
- if m * 25 < power_gt_zero_array[i, 1] <= (m + 1) * 25:
- n_which_p = m
- break
- for n in range(velocity_bin_count):
- if (n * 0.25 + 0.125) < power_gt_zero_array[i, 0] <= ((n + 1) * 0.25 + 0.125):
- n_which_v = n
- break
- if n_which_p > -1 and n_which_v > -1:
- if b_box_remove[n_which_p, n_which_v] == 1:
- dzwind_and_power_sel[i] = 1
- if b_box_remove[n_which_p, n_which_v] == 2:
- dzwind_and_power_sel[i] = 2
- if b_box_remove[n_which_p, n_which_v] == 3:
- dzwind_and_power_sel[i] = 0 # 3 # 额定风速以上的超发功率点认为是正常点,不再标识。
- # 限负荷数据标识方法2:把数据切割为若干个窗口。对每一窗口,以第一个点为基准,连续nWindowLength个数据的功率在方差范围内,呈现显著水平分布的点
- n_window_length = 3
- limit_window = np.zeros(n_window_length, dtype=float)
- power_std = 15 # 功率波动方差
- n_window_num = int(np.floor(power_gt_zero_array_count / n_window_length))
- power_limit_up = self.rated_power - 300
- power_limit_low = 200
- for i in range(n_window_num):
- for j in range(n_window_length):
- limit_window[j] = power_gt_zero_array[i * n_window_length + j, 1]
- b_all_in_areas = 1
- for j in range(n_window_length):
- if limit_window[j] < power_limit_low or limit_window[j] > power_limit_up:
- b_all_in_areas = 0
- if b_all_in_areas == 0:
- continue
- up_limit = limit_window[0] + power_std
- low_limit = limit_window[0] - power_std
- b_all_in_up_low = 1
- for j in range(1, n_window_length):
- if limit_window[j] < low_limit or limit_window[j] > up_limit:
- b_all_in_up_low = 0
- if b_all_in_up_low == 1:
- for j in range(n_window_length):
- dzwind_and_power_sel[i * n_window_length + j] = 4 # 标识窗口内的数据为限负荷数据
- for i in range(power_bin_count - 6):
- pv_left_down = np.zeros(2, dtype=float)
- pv_right_up = np.zeros(2, dtype=float)
- if (p_box_max_index[i + 1] - p_box_max_index[i]) >= 1:
- pv_left_down[0] = (p_box_max_index[i] + curve_width) * 0.25 + 0.125
- pv_left_down[1] = i * 25
- pv_right_up[0] = (p_box_max_index[i + 1] + curve_width) * 0.25 + 0.125
- pv_right_up[1] = (i + 1) * 25
- for m in range(power_gt_zero_array_count):
- if pv_left_down[0] < power_gt_zero_array[m, 0] < pv_right_up[0] and \
- pv_left_down[1] < power_gt_zero_array[m, 1] < pv_right_up[1]: # 在该锯齿中
- if (power_gt_zero_array[m, 1] - pv_left_down[1]) / (
- power_gt_zero_array[m, 0] - pv_left_down[0]) > (
- pv_right_up[1] - pv_left_down[1]) / (
- pv_right_up[0] - pv_left_down[0]): # 斜率大于对角连线,则在锯齿左上三角形中,选中
- dzwind_and_power_sel[m] = 0
- self.df.loc[:, 'lab'] = -1
- self.df.loc[
- self.df[self.df[self.active_power] > 0].index, 'lab'] = dzwind_and_power_sel
- # 把部分欠发的优化为限电
- # 构建条件表达式
- cond1 = (self.df['lab'] == 1) & (
- (self.df[self.active_power] < self.rated_power * 0.75) &
- (self.df[self.pitch_angle_blade] > 0.5)
- )
- cond2 = (self.df['lab'] == 1) & (
- (self.df[self.active_power] < self.rated_power * 0.85) &
- (self.df[self.pitch_angle_blade] > 1.5)
- )
- cond3 = (self.df['lab'] == 1) & (
- (self.df[self.active_power] < self.rated_power * 0.9) &
- (self.df[self.pitch_angle_blade] > 2.5)
- )
- # 使用逻辑或操作符|合并条件
- combined_condition = cond1 | cond2 | cond3
- self.df.loc[combined_condition, 'lab'] = 4
- self.df.loc[self.df[self.active_power] <= 0, 'lab'] = -1
- self.df.reset_index(drop=True, inplace=True)
- if 'index' in self.df.columns:
- del self.df['index']
- return self.df
- def run(self):
- # Implement your class identification logic here
- begin = datetime.datetime.now()
- df = self.identifier()
- trans_print("打标签结束,", df.shape, ",耗时:", datetime.datetime.now() - begin)
- return df
|